Silver nanoparticle-induced cytotoxicity in rat brain endothelial cell culture.
نویسندگان
چکیده
Silver nanoparticles (AgNPs) are among the most widely commercialised engineered nanomaterials, because of their antimicrobial properties. They are already commonly used in medical devices, household products and industry. Concerns have been raised about potential adverse health effects due to increasing dispersion of AgNPs in the environment. The present study examined the cytotoxic effects of spherical, citrate-coated AgNPs (10, 50 and 100 nm) in rat brain endothelial (RBE4) cells and investigated whether the observed effects can be explained by the intrinsic toxicity of the particles or the silver ions released from the particles. The results indicated that exposure of RBE4 cells to AgNPs lead to significant reduction in dye uptake as measured with the Neutral red (NR) assay. The effect was found to be related to particle size, surface area, dose and exposure time. In contrast, silver ions increased NR uptake (ca. 10%) in RBE4 cells after 1h, while a reduction in NR uptake was observed after 24h exposure at high concentrations (20-30 μM). Colony formation, as an indicator of proliferation ability, was completely inhibited by AgNPs at concentrations higher than 1 μg/ml. Silver ions had less effect on the colony formation of RBE4 cells than AgNPs.
منابع مشابه
In vitro Cytotoxicity of Silver Nanoparticles Incorporated in a Soft Silicone Liner
Introduction: Silver nanoparticles (SNPs) have recently been suggested to increase the antimicrobial properties of soft liner materials. However, their safety remains a matter of debate. This study aimed to evaluate the cytotoxicity of Mucopren® soft silicone liner material (Mucopren; Kettenbach, Germany) incorporated in SNPs. Methods: The SNPs with ...
متن کاملEvaluation of Anti-oxidant and Anti-cancer Properties of Silver Nanoparticles Synthesized by Apigenin toward Breast Cancer MCF-7 Cell Line
Introduction: Cancer is one of the most common diseases in the modern societies, which results from the non-stop growth of cells in the body. Due to the advancement of nanobiotechnology, highly effective herbal metabolites can be used to treat cancer. Apigenin is a natural flavonoid that is found in abundance in fruits, vegetables and herbs. The purpose of this study was to investigate the anti...
متن کاملAntimicrobial and cytotoxicity effect of silver nanoparticle synthesized by Croton bonplandianum Baill. leaves
Objective(s): For the development of reliable, ecofriendly, less expensive process for the synthesis of silver nanoparticles and to evaluate the bactericidal, and cytotoxicity properties of silver nanoparticles synthesized from root extract of Croton bonplandianum, Baill. Materials and Methods: The synthesis of silver nanoparticles by plant part of Croton bonplandianum was carried out. The for...
متن کاملDextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture
Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanop...
متن کاملRadiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells
Background: Radiation-induced molecular changes on the endothelial surface of brain arteriovenous malformations (AVM) may be used as markers for specific vascular targeting agents. In this study, we examined the level of expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) on brain endothelial cell surface after radiation treatment, with the aim of targeting the radiation-induc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicology in vitro : an international journal published in association with BIBRA
دوره 27 1 شماره
صفحات -
تاریخ انتشار 2013